Comparative evaluation of SUV, tumor-to-blood standard uptake ratio (SUR), and dual time point measurements for assessment of the metabolic uptake rate in FDG PET
نویسندگان
چکیده
BACKGROUND We have demonstrated recently that the tumor-to-blood standard uptake ratio (SUR) is superior to tumor standardized uptake value (SUV) as a surrogate of the metabolic uptake rate K m of fluorodeoxyglucose (FDG), overcoming several of the known shortcomings of the SUV approach: excellent linear correlation of SUR and K m from Patlak analysis was found using dynamic imaging of liver metastases. However, due to the perfectly standardized uptake period used for SUR determination and the comparatively short uptake period, these results are not automatically valid and applicable for clinical whole-body examinations in which the uptake periods (T) are distinctly longer and can vary considerably. Therefore, the aim of this work was to investigate the correlation between SUR derived from clinical static whole-body scans and K m-surrogate derived from dual time point (DTP) measurements. METHODS DTP (18)F-FDG PET/CT was performed in 90 consecutive patients with histologically proven non-small cell lung cancer (NSCLC). In the PET images, the primary tumor was delineated with an adaptive threshold method. For determination of the blood SUV, an aorta region of interest (ROI) was delineated manually in the attenuation CT and transferred to the PET image. Blood SUV was computed as the mean value of the aorta ROI. SUR values were computed as ratio of tumor SUV and blood SUV. SUR values from the early time point of each DTP measurement were scan time corrected to 75 min postinjection (SURtc). As surrogate of K m, we used the SUR(T) slope, K slope, derived from DTP measurements since it is proportional to the latter under the given circumstances. The correlation of SUV and SURtc with K slope was investigated. The prognostic value of SUV, SURtc, and K slope for overall survival (OS) and progression-free survival (PFS) was investigated with univariate Cox regression in a homogeneous subgroup (N=31) treated with primary chemoradiation. RESULTS Correlation analysis revealed for both, SUV and SURtc, a clear linear correlation with K slope (P<0.001). Correlation SUR vs. K slope was considerably stronger than correlation SUV vs. K slope (R (2)=0.92 and R (2)=0.69, respectively, P<0.001). Univariate Cox regression revealed SURtc and K slope as significant prognostic factors for PFS (hazard ratio (HR) =3.4/ P=0.017 and HR =4.3/ P=0.020, respectively). For SUV, no significant effect was found. None of the investigated parameters was prognostic for OS. CONCLUSIONS Scan-time-corrected SUR is a significantly better surrogate of tumor FDG metabolism in clinical whole-body PET compared to SUV. The very high linear correlation of SUR and DTP-derived K slope (which is proportional to actual K m) implies that for histologically proven malignant lesions, FDG-DTP does not provide added value in comparison to the SUR approach in NSCLC.
منابع مشابه
18F-FDG PET/CT of advanced gastric carcinoma and association of HER2 expression with standardized uptake value
Objective(s): Expression of HER2 in gastric carcinoma has direct prognostic and therapeutic implications in patient management. The aim of this study is to determine whether a relationship exists between standardized uptake value (SUV) and expression of HER2 in advanced gastric carcinoma. Methods: We analyzed the 18F-FDG PET/CT results of 109 patients that underwent gastrectomy for advanced gas...
متن کاملThe PET-derived tumor-to-blood standard uptake ratio (SUR) is superior to tumor SUV as a surrogate parameter of the metabolic rate of FDG
BACKGROUND The standard uptake value (SUV) approach in oncological positron emission tomography has known shortcomings, all of which affect the reliability of the SUV as a surrogate of the targeted quantity, the metabolic rate of [18F]fluorodeoxyglucose (FDG), Km. Among the shortcomings are time dependence, susceptibility to errors in scanner and dose calibration, insufficient correlation betwe...
متن کاملEvaluation of the Effect of Tumor Position on Standardized Uptake Value Using Time-of-Flight Reconstruction and Point Spread Function
Objective(s): The present study was conducted to examine whether the standardized uptake value (SUV) may be affected by the spatial position of a lesion in the radial direction on positron emission tomography (PET) images, obtained via two methods based on time-of-flight (TOF) reconstruction and point spread function (PSF). Methods: A cylinder phantom with the sphere (30mm diameter), located in...
متن کاملDual-time-point FDG-PET/CT Imaging of Temporal Bone Chondroblastoma: A Report of Two Cases
Temporal bone chondroblastoma is an extremely rare benign bone tumor. We encountered two cases showing similar imaging findings on computed tomography (CT), magnetic resonance imaging (MRI), and dual-time-point 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/CT. In both cases, CT images revealed temporal bone defects and sclerotic changes around the tumor. Most parts of the ...
متن کاملCorrection of scan time dependence of standard uptake values in oncological PET
BACKGROUND Standard uptake values (SUV) as well as tumor-to-blood standard uptake ratios (SUR) measured with [ 18F-]fluorodeoxyglucose (FDG) PET are time dependent. This poses a serious problem for reliable quantification since variability of scan start time relative to the time of injection is a persistent issue in clinical oncological Positron emission tomography (PET). In this work, we prese...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016